Nonequilibrium molecular dynamics calculation of the thermal conductivity based on an improved relaxation scheme.

نویسنده

  • Bing-Yang Cao
چکیده

A nonequilibrium molecular dynamics (NEMD) method using stochastic energy injection and removal as uniform heat sources and sinks is developed to calculate the thermal conductivity. The stochastic energy is generated by a Maxwell function generator and is imposed on only a few individual molecules each time step. The relaxation of the thermal perturbation is improved compared to other NEMD algorithms because there are no localized heat source and sink slab regions in the system. The heat sources are uniformly distributed in the right half of the system while the sinks are in the left half, which leads to a periodically quadratic temperature distribution that is almost sinusoidal. The thermal conductivity is then easily calculated from the mean temperatures of the right and left half systems rather than by fitting the temperature profiles. This improved relaxation NEMD scheme is used to calculate the thermal conductivities of liquid and solid argons. It shows that the present algorithm gives accurate results with fast convergence and small size effects. Other stochastic energy perturbation, e.g., thermal noise, can be used to replace the Maxwell-type perturbation used in this paper to make the improved relaxation scheme more effective.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics.

A uniform source-and-sink (USS) scheme, which combines features of the reverse [F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997)] and improved relaxation [B. Y. Cao, J. Chem. Phys. 129, 074106 (2008)] methods, is developed to calculate the thermal conductivity by nonequilibrium molecular dynamics (NEMD). The uniform internal heat source and sink are realized by exchanging the velocity vectors ...

متن کامل

Thermal conductivity calculation of magnetite using molecular dynamics simulation

In the current research, thermal conductivity of magnetite (Fe3O4) has been calculated using molecular dynamic simulation. The rNEMD Molecular Dynamics Method provided in the LMMPS package is used for the simulation of the thermal conductivity. The effects of magnetite layer size and temperature on the thermal conductivity have been investigated. The numerical results have...

متن کامل

Prediction of Spectral Phonon Mean Free Path and Thermal Conductivity with Applications to Thermoelectrics and Thermal Management: A Review

We give a review of the theoretical approaches for predicting spectral phonon mean free path and thermal conductivity of solids. The methods can be summarized into two categories: anharmonic lattice dynamics calculation and molecular dynamics simulation. In the anharmonic lattice dynamics calculation, the anharmonic force constants are used first to calculate the phonon scattering rates, and th...

متن کامل

Buoyancy Term Evolution in the Multi Relaxation Time Model of Lattice Boltzmann Method with Variable Thermal Conductivity Using a Modified Set of Boundary Conditions

During the last few years, a number of numerical boundary condition schemes have been used to study various aspects of the no-slip wall condition using the lattice Boltzmann method. In this paper, a modified boundary condition method is employed to simulate the no-slip wall condition in the presence of the body force term near the wall. These conditions are based on the idea of the bounce-back ...

متن کامل

Role of Interatomic Potentials in Simulation of Thermal Transport in Carbon Nanotubes

Interatomic potentials, which describe interactions between elements of nanosystems, are crucial in theoretical study of their physical properties. We focus on two well known empirical potentials, i.e. Tersoff's and Brenner's potentials, and compare their performance in calculation of thermal transport in carbon nanotubes. In this way, we study the temperature and diameter dependence of thermal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 129 7  شماره 

صفحات  -

تاریخ انتشار 2008